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On the oscillations of harbours of arbitrary shape 
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A theory is developed for calculating oscillations of harbours of constant depth 
and arbitrary shape. This theory is based on the solution of a singular integral 
equation. Numerical results have been calculated for rectangular harbours so as 
to check the accuracy of the method. Examples for wave ampli6cation factor 
and velocity field for both rectangular and actual complex-shaped harbours are 
given. 

1. Introduction 
The occurrence of resonance in harbours is fundamentally due to the fact that 

waves arriving at  a widening or narrowing (or at a depth increase or decrease) are 
partially reflected. Consider, for example, a rectangular harbour open to the sea. 
Waves arriving within the harbour are reflected seaward by the rear boundary; 
these outgoing waves, upon reaching the harbour entrance again, are partially 
reflected by the sudden widening, with the net result that part of the wave energy 
which got in does not get back out. This trapping of energy by the harbour leads 
to resonance if the phases of the various incident and reflected waves happen to 
be such that reinforcement occurs. In  this case, the amplitude of oscillation may 
grow, within the harbour, to values far greater than those incident. At some 
stage of growth, however, energy dissipation and radiation equals energy 
trapping and the oscillation amplitude reaches its maximum. The dissipation is 
of three main forms: wave breaking within the harbour when the oscillation 
exceeds the breaking limit, frictional effects at  the bottom, and wave absorption 
on the bounding beaches. However, radiation seaward is generally more 
important than all of these. 

The problems of developing a practical calculation procedure applicable to 
these processes, already difficult, are compounded by the facts that harbours are 
usually of complex shape and that incident waves are never periodic. Irregu- 
larity of shape causes complicated reflexions of the waves within the harbour so 
that even for periodic input the agitation may appear highly irregular. The 
response to random sea or sweIl or to a dispersive wave train generated by a 
localized disturbance is still more difficult to anaIyze. Furthermore, oscillations 
may be induced by other mechanisms such as fluctuations in atmospheric condi- 
tions, currents moving past the entrance which generate a series of alternating 
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vortices, and even ship transit in and out of the harbour. It is no wonder, then, 
that  taken in its entirety the problem of harbour resonance is intimidating. 

Yet, some form of solution must be found since the harbour resonance problem 
is of very great practical importance in coastal engineering. This is particularly 
so in connexion with ship mooring problems. It is well known that harbour 
oscillations of only a few inches may excite large motions in ship-mooring 
systems causing mooring lines to  break, and ships t o  collide with adjacent 
structures. To minimize such events is the goal of harbour and breakwater 
design, and for that  purpose one must be able to determine harbour response 
characteristics. 

Analytical studies in this area are, for the most part, quite recent. McNown 
(1952) determined the resonant frequency of a circular harbour with a small 
opening under the assumption that the entrance remains as a node of a standing 
wave; a similar approach was applied by Kravtchenko & McNown (1955) to the 
rectangular harbour. Miles & Munk (1961) considered harbours of arbitzrary 
shape and formulated an integral equation describing the agitation within the 
harbour by matching conditions inside and outside the harbour at the entrance. 
But they imposed the restrictions of narrow openings, and slim and rectangular 
harbours, in order to obtain analytical expressions for the resonant conditions 
and maximum amplification. Ippen & Goda (1963) applied Fourier transforma- 
tion methods and obtained the solution of the rectangular harbour by matching 
the wave amplitude and velocity approximately a t  the entrance. The results 
were compared with a series of experiments. For long harbours, the agreement 
between theory and experiment was good except, of course, a t  the resonance 
point where viscous dissipation is important and the experiments become diE- 
cult. Biesel & Le MBhautB (1955, 1956) and Le MBhaut6 (1960, 1961) presented 
an interesting approach in the solution of a rectangular harbour under various 
types of entrance conditions through the use of the theory of complex numbers. 
Most recently, Leendertse (1967) has developed a numerical procedure t o  
determine the response of basins to long waves, elevation a t  open boundaries 
being prescribed. 

All of the foregoing studies suffer to some degree from various deficiencies; 
either they are applicable only to  idealized shapes or matching conditions are 
required a t  the harbour entrance. The present study requires no prescribed 
entrance conditions, and permits solution for completely arbitrary shape. 
Furthermore, the present method is highly economical for practical use since the 
numerical scheme involved does not require long computing time (computation 
time for both the results of figures 4 and 9 is less than one minute on the CDC 
6600). 

2. Theoretical formulation 

exists a velocity potential @(q y, z ;  t )  which satisfies the Laplace equation 
Assuming that the fluid is inviscid, incompressible, and irrotational, there 

VZ@ = 0 (2.1) 
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throughout the fluid contained within the boundary surfaces as shown in figure 1. 
If the wave is assumed to  be of small amplitude, the velocity term in the Bernoulli 
equation may be neglected. Thus, the governing dynamic boundary condition on 
the free surface becomes 

where [ is the wave elevation and g is gravitational acceleration. 

X 

FIGURE 1. A schematic drawing of the harbour. 

The linearized kinematic condition a t  the free surface, which follows from the 
fact that  surface water particles stay on the surface, is expressed in the form 

aqat = a q a z  at z = 0. (2.3) 

a@/an = 0 (2.4) 

The condition on the fixed boundary surface is that the velocity normal to the 
surface equals zero; that is 

on the boundary S. 

is simply 

Finally, the condition a t  infinity requires that 

Since we are dealing with uniform water depth h, the condition a t  the bottom 

a q a z  = o a t  z = - h. (2.5) 

0 = (Do+@,, (2.6) 

(2.7) 

and @, is an outgoing wave. (2.8) 

= cos (kx cos p) exp [ - i ( o t  - ky sinp)], 

The above equations complete the formulation of the problem of oscillation in 
a constant depth harbour of arbitrary shape. 

Since the water depth is uniform, we may assume that the velocity potential 
is a product of functions ofx and y, z ,  and t ,  such as 

@(x, y, x ;  t )  = ( l / w i )  $(z, y) Z(z) e-i*Jt, (2.9) 

where w is the angular frequency. 
29 F L M  42 
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Substituting the above expression into the Laplace equation, separating the 
functions of x and y ,  and z and equating them to a constant, say k2, we have 

and 

(2.10) 

(2.11) 

The solution of (2.11) together with the bottom boundary condition 

aZ/& = 0 at z = - h  (2.12) 

and the kinematic surface boundary condition 

(2.13) 

can be found in some text-books (e.g. Stoker 1963), and is simply 

Z(Z) = - Ag Gosh k(z + h)/cosh kh, (2.14) 

where A is the amplitude of a standing wave at  infinity. The constant, k ,  is a 
wave-number, and is related to the angular frequency o and the water depth h 
through the kinematic boundary condition at the free surface. This relationship 
can be simply obtained by substituting (2.9), (2.13) and (2.14) into (2.3). One 

(2.15) 
finds 

o2 = gk tanh kh. 

The problem now is to obtain the solution of (2.10) with the boundary condition 

a#/an = 0 on the solid boundary S ,  (2.16) 

which is obtained from the substitution of (2.9) into (2.6), and with the prescribed 
condition at infinity. The condition at infinity can be determined as if the 
harbour were absent. This is due to the fact that the influence of radiated'waves 
from the harbour tends to zero at infinity. Thus, for a straight-crested standing 
wave at  infinity with the crest at  an angle p to the shoreline, we have 

#o = cos(kxcos/3)exp[-ikysin/3] (0  < /3 < T ) ,  (2.17) 

which corresponds to the wave form 

1: = Acos(kzcos~)exp[-i(wt-kysin/3)] (2.18) 

a t  infinity. If the wave front propagates directly toward the shore, /3 is equal to 

(2.19) 
zero, so that $o = cos kx.  

3. Derivation of the integral equation 
For a standing wave of unit amplitude a t  infinity, the solution of Weber's 

equation (2.10), together with the boundary conditions, (2.16) and (2.17), can be 
found through the introduction of a source function Q(E,  7) along the boundary S ,  
where 5 and 7 refer to co-ordinates on the boundary. 
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Thus, the value of #(x, y) at any point (2, y), is equal to the sum of two parts; 
one is the influence from infinity #o(x, y) and the other is the contribution of the 
source distribution, that is, the scattered wave caused by the presence of the 
boundary. The latter will be given by 

Is dXQ(6,  7) (4x7 Y; 5,7), (3.1) 

where G(z, y; 6 , ~ )  is the Green’s function and Q(6,r) is the unknown source 
distribution, which can be determined from the boundary conditions. 

The Green’s function has to be chosen so that it is the solution of Weber’s 
equation, (2.10), satisfies the radiation condition at  infinity, and has a singu- 
larity at  the source point. Thus we choose the Green’s function to be a Hankel 
function of the first kind rather than of the second kind to guarantee that the 
disturbance, due to the harbour, at  infinity takes the form of an outgoing wave 
rather than an incoming wave. 

(3.2) 
where (3.3) 

so that the value of $(x, y) at any point (2, y) is 

Gfx, y; ‘577) = - WP(W, 
R = H. - El2  + (y - 7)”4 

The problem now is to determine the strength of the source distribution &(El 7). 
This can be accomplished by applying the boundary condition (2.16)’ which gives 

(3.5) 

Since the limit is singular inside the integral, it  has to be treated with care. We 
evaluate the integral in (3.5) by use of contour integration. The path of the 
integral is along the boundary except around the point ( F ,  7’) where the contour 
is deformed into a small circle with a radius E .  Since the contribution around a 
large semicircle is zero, the integral in (3.5) may be evaluated as follows: 

a z,;Li& & / s d s Q ( 5 ,  7) G(x,  Y; f;’ 7) 

= s, dX&(E,  7) GJC’ 7’; 5’7) + lim Ie dXQ(E,  7) G?&, Y; 6 7  7), (3.6) 
z, v-r. 7, 

where the sign 

Hankel function can be approximated by 

refers to a principal value in the sense of Cauchy. Since the 
ss 

(3 .7)  
1 

2n 

the second integral of the right-hand side of (3.6) may be integrated analytically. 
We have 

- &iBb’)(kB) -+-In (kR) (R-t  0) 

29-2 



452 

Thus the integral equation becomes 

L-S. Hwang and E. 0. Tuck 

a 
~ Q ( E ' ,  7') +j ~ S Q ( [ ,  7) Gn(kR) = - $ o ( t ' ,  T ' ) ,  (3.9) 

S 

where Gn(kR) = - @ a(Hf)(kR))/an. (3.10) 

The above equation cannot be solved analytically. A numerical method for 
evaluating the source distribution &([,y) is derived in the following section. 

4. Numerical solution 
Let us divide the boundary S into many segments with length ASi along the 

boundary, where j = 1,2,3,  . . . , N .  The lengths of these segments need not be 
uniform; however, they must be small enough so that within each segment, the 
source strength Q(6, 7) does not vary too much. Furthermore, let the midpoint of 
AS, be (ti, qi) and evaluate the integral at  this midpoint of each segment. 
Within each segment the source strength does not vary much, so that we take 
Q(f ; ,  7) to be constant and equal to Q5 within ASj. Then (3.9) becomes 

for simplicity, we may write the above equation in the following form 

where 

J 
(4.3) 

and aij is the Kronecker delta. 

the constants Bij are known. 

and the regular part: 

Equation (4.2) is an algebraic equation which can be solved easily provided 

To evaluate B,, let us split G(kR) = - @Hi') into two parts; one singular part 

G(kR) = (1/27l) log R + M ( k R ) .  (4.4) 

Substituting (4.4) into (4.2), we have 

The first integral on the right-hand side of the equation can be calculated 
analytically and is 

where Asii is the angle subtended at (ti, qa) by the segment of S between (Xi, 5) 
and (-q+l, 5+1). 
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Now we fix an index i [that is, choose a point (ti, qi)] and then run over the 
whole set of j = 1,2 ,3 ,  . . ., N and evaluate the angle AOij as follows: 

For i +j (4.7) 

For i =j A0ij = 0. (4.8) 

The last integral in (4.5) is not singular, thus the bar on the integral can be 
left out. It can be approximated directly to be 

P 

J dSaMpn = ASjaM/an 
ASj 

And ASj aM/an can be evaluated as follows : 

ASj  M, = A? M x  - AXj My 

(4.9) 

(4.10) 

where AXj = Xj+l-Xj, A$ = q+l-Y,. (4.11) 

The value of bi in (4.2) can be obtained in a similar way, i.e. 

a # O  AY a @ O  AX 
ax [(AX)2+(AY)2]j+F [(AX)2+(AY)2]) 

=-  (4.12) 

Once the source strength Q has been calculated, the value of $(x,y) can be 
evaluated as follows: 

a 

where A . = -  J logRdS 
2n ASj 

3 

log z dz . eta 

(4.13) 

= Re - e-ia [x2 log z2 - z2 - z1 log x1 + . 
[in 41 

The symbols zl, z2 and a are as indicated in figure 2, and are related to the original 
system as follows (zl and x2 are complex numbers) : 

and 

e-aa = 

ASj = 

z2 = 

x1 = 

(4.14) 
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Once the value of $(x,y) is known, the velocity potential can be calculated 
from (2.9). 

where 4(x, y) is the value obtained from (4.13). 

(1111111111111111111111 

(4.15) 

FIGURE 2. Co-ordinates used to evaluate the integral 

The velocity components a t  any location (2, y, z) can be calculated as 

cosh k(z + h) ax ] coshkh ’ (4.16) 

(4.17) 
cosh k(z  + h) 

cos wt - -? sin wt ” ’ ] - 

coshkh ’ 
2 , = - - = - -  

aY 

where the subscripts i and r refer to the imaginary and real parts of the complex 
values, respectively. 

The amplification factor a t  any point (x, y) is equal to  the ratio of maximum 
wave height obtained at  point (x, y) to  the wave height a t  infinity. The maximum 
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wave amplitude at infinity is A .  However, the maximum wave amplitude at 

Thus the amplification factor at  any point (x, y) is simply 

R = I$ivw)I. (4.18) 

The actual choice of number and distribution of segments around the harbour 
is necessarily largely intuitive. The results presented in this paper were computed 
with about 60 segments, distributed fairly evenly around the harbour and 
extending to about two wavelengths along the straight outside edges. Essentially 
the same results (to an accuracy of better than one per cent inside the harbour) 
were obtained using 40 segments, either by truncating closer to the harbour 
entrance (say at one wavelength distance) or by reducing the overall density 
of segments. Generally speaking, a density of eight segments per wavelength was 
found to be satisfactory, with more points where the shoreline changes rapidly 
or at  points of special interest. 

5. Results and discussion 
To check the accuracy of the numerical results obtained by the present theory, 

a rectangular harbour of dimension 12-25 x 2.38 inches was chosen first for 
numerical calculation. This particular harbour geometry has been studied both 
analytically and experimentally by Ippen & Goda (1  963); therefore, a comparison 
of their results with the results obtained by the present theory can be made. 
Furthermore, this is a relatively long harbour, so that Ippen & Goda’s approxi- 
mations should be acceptable, and our results should agree with theirs. 

Figure 3 shows the frequency response of the rectangular harbour. The experi- 
mental results are indicated by the small circles, while the theoretical results 
obtained by Ippen & Goda are the solid curve. The dotted line was calculated by 
the present theory. All results were calculated and measured at  location A as 
shown on the figure. Both theoretical curves are in agreement with the experi- 
mental data except around the fundamental mode. 

The scattering of the experimental amplification factors, around the funda- 
mental mode of resonance, has been indicated by Ippen & Goda to be due to 
inefficiency of the wave energy dissipators for incident waves of very low steep- 
ness. For low wave steepness, the transmission coefficient of wave filters increases, 
and their effectiveness for dissipation becomes small. Thus, the incident waves 
generated by the wave paddle were interfered with by the waves radiated from 
the wall. 

The experimental results are lower than theory close to the fundamental 
periods. This is probably due to energy dissipation generated by eddies around 
the entrance and friction along the side wall and bottom, which has not been 
considered in either theory. 

As shown in figure 3, in the immediate neighbourhood of the fundamental 
period, the results obtained by the present theory are slightly larger than those 
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reported by Ippen & Goda. These differences are probably due to the result of 
approximation used by Ippen & Goda. 

1 1  I I I I I I I I I I 

I 
! I  

Harbour 

I k 2 . 3 8 i n .  

12.25 in. 
A 

kl 

FIGURE 3. A cornparison of theoretical and experimental results for frequency 
response of a fully open harbour. 

Typical amplification fields of wave height for the rectangular harbour were 
calculated by use of (4.18). The results of these calculations are plotted in 
figures 4, 5 and 6. The units indicated on the figures represent the scale of the 
wave height relative to the incoming wave height. The results plotted in figures 4 
and 5 are for kl equal to 1.3 and 4. They are located near the fundamental and 
the first harmonic, respectively. Thus the maximum wave height inside the 
harbour is larger than the wave height outside the harbour. Furthermore, it is 
interesting to point out that the waves outside the harbour entrance do not 
decrease uniformly as the distance from the harbour increases. Instead, they 
exhibit a modulation phenomenon which results from the superposition of the 
radiated waves and the incident waves. The results plotted in figures 4 and 6 
have the same wave-number, but a different incident angle. It is clear that the 
amplification factor in figure 6 is considerably less than that in figure 4. This is 
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expected because the effective wave-number decreases when the incident wave is 
at an angle, and the effective frequency of excitation is further away from the 
fundamental period of oscillation. 

1-10 I 

'4 
-1.10 ' I 

I I I I I I I I I I 

-1.10 -0.90 -0.70 -0.50 -0.30 -0.10 0.10 0.30 0.50 0.70 0.90 

4 1  

FIGURE 4. Amplification factor field of the wave height at 
kt = 1.3, p = 0". ~ 15 units. 

10 

Figures 7 and 8 show the amplification factor of the wave height for a bay 
with a complex shape. I n  the case where the wave-number is small (long waves), 
the water level inside the entire harbour oscillates almost uniformly; thus the 
amplification factor is more or less uniform inside the harbour as shown in figure 7. 

In contrast, in figure 8, the incident wavelength L is relatively short in com- 
parison to harbour length I (L z 1.51). The oscillations inside the harbour become 
rather complicated. Each basin inside the harbour may develop its own mode of 
oscillation, and a t  the same time may also affect the oscillation of a neighbouring 
basin. Such mutual interaction may be referred to as a 'coupling oscillation'. 
Thus, in determining oscillations of a harbour with multiple basins, one cannot 
treat each basin separately without considering these interaction phenomena. 
As can be seen in figure 7, there is hardly any nodal line a t  the entrance of the 
bay, while in figure 8, one may identify a nodal line near the entrance. The 
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presence and location of such a nodal line is not only a function of harbour 
geometry but also depends on the frequency of the incoming wave. A solution 
with an imposed condition at the entrance is, therefore, not the solution of the 
actual problem. Such a condition has often been assumed (McNown 

1.10 

0.90 

0.70 

0.50 

0.30 

0.10 

.u . 
a 

-0.10 

- 0.30 

-0.50 

- 0.70 

- 0.90 

- 1.10 

1952; 

j 
'10 -0.90 -0.70 -0.50 -0.30 -0.10 0.10 0.30 0.50 0.70 0.90 1.10 

4 1  

FIGURE 5. Amplification factor field of the wave height at 
kl = 4, /I = 0". ___- 6 units. 

Wilson, Hendrickson & Kilmer 1965; Leendertse 1967; Loomis 1966). In parti- 
cular, the use of the assumption of a nodal line at  the entrance may introduce a 
large degree of inaccuracy, and may sometimes lead to wrong conclusions. With 
a complicated open harbour, it is, in any case, quite arbitrary what we might call 
the 'entrance'. 

The velocity at any point can be calculated from (4.16) and (4.17). At the free 
surface, the velocity can be obtained simply by letting z = 0 so that 
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0.90 
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0.50 

0.30 

0.10 
.u . 
;h 

-0.10 

- 0.30 

- 0.50 

- 0.70 

- 0.90 

- 1.10 
-1.10 -0.90 -0.70 -0.50 -0.30 -0.10 0.10 0.30 0.50 0.70 0.90 1.10 

X I 1  

FIGURE 6. Amplification factor field of the wave height a t  
kl = 4, p = 45". - 6 units. 

1.20 1 I I I I I I I I I I I 

-1.20 -1.00 -0.80 -0.60 -0.40 -0.20 -0.00 0.20 0.40 0.60 0.80 1.00 1.20 
1 

X i 1  

FIGURE 7. Amplification factor field of the wave height in an 
arbitrarily shaped bay at  kl = 1.3, p = 0'. -__ 12 units. 
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FIGURE 8. Amplification factor field of the wave height in an 
arbitrarily shaped bay at kl = 4, /3 = 0'. - 6 imits. 
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from the above equations, it is clear that at  a given point the magnitude and the 
direction of the velocity varies from time to time and the period of mch variation 
equals the period of the incoming waves. 

Figures 9 and 10 show the velocity field of the rectangular harbour corre- 
sponding to the phase wt = in with kl = 1.3 and 4. The small line segments on 

1.10 I 1 

-1.10 I I I I I I I 1 I I I I I 
-1.10 -0.90 -0.70 -0.50 -0.30 -0.10 0.10 0.30 0.50 0.70 0.90 1-10 

4 
FIG~JRE 10. Velocity field in a rectangular harbour at kl = 4, p = 0'. 

16 units.  

the figures indicate the magnitude and the direction of the velocity. The small 
black dots at the ends of the line segments indicate the locations where the 
velocity was calculated. The line pointing away from the black dot indicates the 
direction of the velocity. Figure 9 indicates that the velocity vectors around the 
harbour, a t  that instant, point toward the harbour entrance. This inflow of water 
in all directions around the entrance results in an increase of wave elevation 
inside the harbour. The magnification of the wave amplitude inside the harbour 
is associated with the proper match of the inflow of water with the outflow from 
the reflexions on the harbour boundary. If the characteristics of the harbour are 
such that the outflow and the inflow of water are properly matched with the 
incident wave, resonance is achieved. The wave-number or period for which the 
proper match can be achieved is a characteristic of the harbour. 
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Figure 11 shows the velocity field for kl = 4, but the incident wave is a t  an angle 
/3 = 45 degrees with the shoreline. The velocity outside the harbour is not 
symmetric with respect to the centreline. However, inside the harbour, the 
velocity pattern is still relatively uniform due to the relative narrowness of the 
harbour. 

1.101 1 

- 
. 
5 . . . 
5 . . . 

-1.10'' I I I I I I I I I I 1 
-1.10 -0% -0.70 -0.50 -0.30 -0.10- 010 0.30 0.50 0.70 0.90 1-10 

4 1  
FIGURE 11. Velocity field in a rectangular harbour at kl = 4, /J' = 45'. 

30 units. 

Figure 12 (plate 1) shows two reproduced photos of path-line patterns taken 
by Ippen & Goda. These two photos were taken at  periods T = 0.6 and 0-5 sec, 
as indicated in the figures. The velocity patterns shown on figures 9-1 1 exhibit 
some resemblance to the path-line patterns indicated in figure 12, although no 
quantitative agreement is to be expected since the harbour dimensions are 
different. 

Figures 13 and 14 show the velocity field of an arbitrarily shaped bay. It is 
interesting to see that the velocity inside the harbour is not uniform. The exist- 
ence of such complicated motions results from the phase lag of the reflected wave 
from the complex boundary. Such a complicated motion is more pronounced 
when the incident wave period becomes small, as can be seen from a comparison 
of figures 13 and 14. 
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"11 
FIGURE 13. Velocity field in an arbitrarily shaped bay a t  kl = 1.3, B = 0". 

20 units. 
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4 
FIGURE 14. Velocity field in an arbitrarily shaped bay at kl = 4, B = Oo. 

15 units. 
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